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Abstract 

Research shows that anxiety can disrupt learning processes, 

but few studies have examined anxiety’s relationships to 

online learning behaviors. This study considers the interplay 

between students’ anxiety about science and behavior within 

an online system designed to support self-regulated science 

inquiry. Using the searching, monitoring, assessing, 

rehearsing, and translating (SMART) classification schema 

for self-regulated learning (SRL), we leverage microanalysis 

of self-regulated behaviors to better understand how science 

anxiety inhibits (or supports) different learning operations. 

Specifically, we show that while science anxiety is positively 

associated with searching behaviors, it is negatively associated 

with monitoring behaviors, suggesting that anxious students 

may avoid evaluation, opting instead to compensate with 

information-seeking. These findings help us to better 

understand SRL processes and may also help us support 

anxious students in developing SRL strategies. 

 

Keywords: Education; e-learning; data mining; science 
anxiety; learning technology; self-regulated learning; self-
efficacy  

Introduction 

As a basic human emotion, anxiety refers to an ensemble 

of cognitive, affective, somatic arousal, and behavioral 

components, evoked in response to mental representations of 

a threat or danger in the environment (Zeidner, 2014). In 

educational contexts, test anxiety may be the most commonly 

discussed form of anxiety (Zeidner, 2007), but research has 

also considered anxiety surrounding specific subjects or 

fields (Mallow & McDermott, 1988), including science 

anxiety – the focus of this work. 

Students suffering from science anxiety are often calm and 

productive in nonscience courses, including mathematics, but 

experience anxiety in science classes. Science anxiety is 

distinct from general anxiety (Mallow & McDermott, 1988) 

and can be caused by an array of sources, including lack of 

role models, gender/racial stereotyping, and the stereotyping 

of scientists in the popular media (Udo et al., 2004). Female 

students can be especially affected, and some research 

indicates that female students are significantly more likely to 

experience science anxiety than their male peers (Udo et al., 

2004). Research suggests a number of short term (e.g., lower 

self-efficacy) and long term (e.g., avoiding certain careers) 

effects of science anxiety (Udo et al., 2004).  

Anxiety has also been linked to avoidance behaviors 

(Middleton & Midgley, 1997) and task-level performance 

and behavior (Eysenck et al., 2007). Neuroscience research 

has shown that anxiety can enhance neural patterns 

associated with error detection (Moser et al., 2013), which 

can prove advantageous in some learning contexts. However, 

anxiety is also thought to inhibit both working memory (Wu, 

2018) and the goal-directed attention system (Eysenck et al., 

2007). Further investigations into attentional control suggest 
anxiety often inhibits students’ efficiency more than their 

performance (Eysenck et al., 2007). Theoretically, this 

suggests that anxiety limits students’ ability to use prior 

knowledge/expectations to monitor their progress on current 

goals (Corbetta & Shulman, 2002; Eysenck et al., 2007) – a 

crucial underpinning to self-regulated learning (SRL). 

At a high level, SRL is a process in which learners take 

initiative to identify their learning goals and then regulate 

their learning strategies, cognitive resources, motivation, and 

behavior to optimize their learning outcomes (Pekrun et al., 

2002; Winne, 2017). Since it was first characterized by 

Zimmerman (1989), SRL’s essential role in learning has 

become well established (Klug et al., 2011). Indeed, Dent & 

Koenka’s (2016) recent meta-analysis found that SRL 

practices were moderately correlated with academic 

achievement (r=0.20) and science outcomes specifically 

(r=0.26). Prior work has also examined the relationship 

between science anxiety and measures of SRL, but those 

measures have often been collected with self-report (e.g., 

Tärning et al., 2017), which can be susceptible to presentation 

effects, and may be particularly unreliable in this case given 

anxiety’s negative impacts on cognition and reasoning.  

In classrooms, teachers may employ several techniques to 

support anxious students (Finlayson, 2014), but learning 

technologies are often self-led environments with minimal 

external supports (Azevedo et al., 2010). Students must 

instead use SRL tactics to allocate their time and complete 

the learning task. As such, it is important to understand how 

anxiety influences SRL within learning technology. 

This study examines the impact of science anxiety on how 

students interact with Betty’s Brain, a learning-by-teaching 

tool for middle school science. Through a study of 99 sixth-
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graders, we examine how science anxiety relates to student 

behavior, performance, and perceptions of the learning 

technology. We examine student behavior through the lens of 

the COPES and SMART models of SRL (Winne, 2017). The 

COPES model classifies elements of SRL into five 

categories: Conditions, Operations, Products, Evaluations, 

and Standards). In this work, we categorize all student actions 

recorded in the logs as “operations” within the COPES model 

(defined as “cognitive and behavioral actions applied to 

perform the task”). We then further subcategorize these 

operations using Winne’s (2011) SMART model, which 

distinguishes operations based on their inputs and the 

products generated (more detail below).  

To our knowledge, this paper presents the first exploration 

of the relationship between anxiety and SRL behaviors within 

learning technology. Through this approach, we provide 

detailed insight into the learning methods a student is 

employing as well as understanding how effective these 

methods may be.  

Methods 

This study explores the relationship between measures of 

science anxiety (adapted from Betz, 1978) and students self-

regulatory behaviors (Winne, 2017) within the open-ended 

computer-based learning environment Betty’s Brain. 

Betty’s Brain Platform 

Betty’s Brain uses a learning-by-teaching model (Biswas 

et al., 2004), where students must teach a virtual agent named 

Betty by creating a causal map of a scientific process (e.g., 

climate change). Betty shows her “learning” by taking 

quizzes that are graded by a mentor agent, Mr. Davis. As 

students construct Betty’s map, they must navigate various 

learning resources, including hypermedia resources and a 

teaching manual that explains how to represent causal 

reasoning. In this open-ended system, students choose how 

they build their maps, how often they quiz Betty, and how 

often they interact with Mr. Davis, who supports their 

learning and teaching efforts (Biswas et al., 2016).  

Betty’s Brain is a suitable environment for studying SRL 

behaviors for two reasons. First, students choose when and 

how to perform each step of the learning process (both their 

own and Betty’s). Indeed, the Betty’s Brain’s pedagogical 

agents are designed to facilitate the development of SRL 

behaviors by encouraging the gradual internalization of 

effective learning strategies. Second, students’ interactions 

are logged with detailed timing information, enabling the 

microanalysis of student actions (Siadaty et al., 2016) for the 

measurement of SRL strategies. 

Anxiety Measure 

Science anxiety was measured using an adapted version of 

the math anxiety survey (MAS): a ten-item survey that uses 

a six-point Likert scale. MAS was chosen since it is suitable 

for younger learners (Johnston-Wilder et al., 2014) and has 

high test–retest reliability (Pajares & Urdan, 1996). We 

adapted questions to refer to science topics instead of 

mathematics (Figure 2), and responses were averaged to yield 

a final science anxiety score between 1 and 6.  

 

 

Figure 1. A partial causal map in Betty’s Brain  

 

 

Original MAS “Mathematics makes me feel 

uncomfortable and nervous” 

Modified “Science makes me feel 

uncomfortable and nervous” 

Figure 2. Example of modification to MAS items  

Measures of Self-Regulated Learning 

We study SRL in the context of the COPES, and 

subsequent SMART, models of SRL. The COPES model, 

grounded in information processing theory, characterizes 

SRL as a series of events that happen over recursive stages. 

These stages are (1) task definition, (2) goal setting and 

planning, (3) studying tactics, and (4) metacognitively 

adapting studying techniques. Each stage is then 

characterized by Conditions, Operations, Products, 

Evaluations, and Standards (COPES). Further work from 

Winne provided additional subcategories within the COPES 

model – the SMART model of operations (Winne, 2017). The 

SMART model presents a more detailed approach, 
categorizing operations into five kinds of activities: 

searching, monitoring, assembling, rehearsing, and 

translating.  

We assigned each of the possible student actions within 

Betty’s Brain (see above) to one of the SMART categories, 

paying particular attention to student agency. Betty’s Brain 

requires students to decide when to look for information and 

how to build, refine, and test their causal map, but some 

quizzes, for example, are system-initiated. Each category is 

briefly described below, and specific examples are given; for 

more details, see (Winne, 2011, 2017).  

Searching. Learners who are searching choose to focus 

their attention on a particular knowledge base or resource to 

update working memory (e.g., search the virtual textbook). 

Monitoring. Learners who are monitoring evaluate their 

perceptions compared to available standards (e.g., reviewing 

quiz feedback).  

Assembling. Learners who are assembling connect new 

knowledge items to networks of prior knowledge, 
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strengthening working memory (e.g., adding a causal link to 

the map).  

Rehearsing. Learners who are rehearsing repeatedly direct 

attention to information they are currently working on to 

reinforce that information in working memory. Betty’s Brain 

logged no rehearsing actions, so this category was not 

analyzed.  

Translating. Learners who are translating reformat 

information into a new representation, creating the potential 

for alternate interpretations (e.g., taking notes about the 

readings). 

We elected to categorize operations that added new items 

to the concept map within Betty’s Brain as assembling and 

operations that edited existing items on the map as 

monitoring. However, we used student agency to help 

distinguish between translation and monitoring tasks. On the 

one hand, we determined that submitting a causal map for 

Betty to take a quiz (a student-initiated action) was 

monitoring because it was an action designed to elicit an 

evaluation. On the other hand, submitting a multiple-choice 

question – an evaluative action which requires a student to 

convert knowledge from the virtual textbook into a new 

format – was classified as either monitoring or translation, 

depending on whether the student or the system had initiated 

the action. That is, actions that were initiated by the system 

were classified as translating even if they had a strong 

evaluative component. 

To operationalize these constructs, we leverage the 

timestamps logged for each action and calculate proportion 

of time spent on actions in each SMART category. We use 

time as out measure as opposed to number of actions in each 

category, as action counts did not necessarily reflect the 

amount of each category being performed. This was because 

some types of actions take considerably more time than 

others, this giving a misleading interpretation. For example, 

there are more monitoring actions than searching actions; 

however, it is common for students to spend considerably 

more time searching than monitoring. Thus, for analysis 

purposes, we calculated the time spent on each action instead 

of raw action counts.  

 We combine these with measures of knowledge, 

perceptual and motivational constructs, outlined in Table 1. 

We also included a measure of off-task behavior, calculated 

as the proportion of time which the student neither 1) viewed 

an information source for at least 30 seconds; nor 2) edited 

their map.  

Data Collection 

Data was collected at an urban Tennessee middle school, 

from 99 sixth-graders who used Betty’s Brain in their regular 

science class. This school’s population is 60% White, 25% 

Black, 9% Asian, and 5% Hispanic, with 8% enrolled in the 

free/reduced-price lunch program. Individual demographics 

were not collected.  

Students used Betty’s Brain to complete two science 

inquiry scenarios conducted in December 2018 and February 

2019. In the first scenario, students spent four days (approx. 

50 min/day) using Betty’s Brain to complete a causal map 

about climate change. In the second scenario, students spent 

three days modeling thermoregulation. Students completed a 

pre-test of their prior knowledge before each scenario and an 

identical post-test after each scenario. Learning was then 

operationalized as post-test minus pre-test in both cases, 

yielding one learning score per scenario. 

Items from the self-efficacy and task value scales (Table 1) 

were evenly split between the start and end of the first 

scenario (and later recombined). Finally, at the end of the 

second (thermoregulation) scenario, science anxiety surveys 

were administered alongside questions about students’ 

perceptions of difficulty and familiarity of the topic and 

questions about Mr. Davis. Between the two scenarios, minor 

changes were made to Betty’s Brain, including small changes 

to make Mr. Davis seem more polite. All other procedures 

were identical. 

Table 1. Additional measures examined 

Measure Level Type Description 

Pre/Post 

Test 

Scenario  Test Assessed knowledge of the current topic 

before and after Betty’s Brain 

Perc.  

Diff. 

Scenario  Survey Single Likert scale of students’ perceived 

difficulty of each scenario 

Perc. 

Fam. 

Scenario  Survey Single Likert scale of perceived familiarity 

with each scenario 

Self-

Efficacy 

Student  Survey Seven-item measure of self-efficacy derived 

from (Pintrich et al., 1991) 

Task 

Value 

Student  Survey Five-item measure of value of science 

(Pintrich et al., 1991) 

Off-Task 

Behavior 

Scenario  Derived 

fr/ logs  

Time spent idle/disengaged from the task 

(Segedy et al., 2015) 

Results 

Anxiety was approximately normally distributed, but a 

paired-samples t-test showed significant differences in prior 

knowledge for the two topics (climate change: M=6.24, 

SD=2.65; thermoregulation: M=5.74, SD=2.25; t(98)=-10.64, 

p < 0.001). Given these differences and known links between 

anxiety and performance (Mallow, 2006), we used a linear 

mixed-effects model (implemented in R with Bates et al.’s 

(2007) lme4 package) to regress pre-test scores on anxiety 

and topic, with student as an intercept-only random effect. 

This approach was chosen due to the repeated (multiple 

sessions per student) and nested structure (sessions nested 

within students) of the data (Pinheiro & Bates, 2006). 

Because prior knowledge varied significantly as a function of 

the topic (p = .028) and anxiety (p = .001), we Z-scored both 

tests by topic and retained pre-test as a covariate in future 

models. Descriptive statistics for each variable in our analysis 

below (splitting by topic where appropriate) are shown in 

Table 2 and Table 3.  
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Table 2. Student-level descriptive statistics 

 Mean SD Min Max 

Science 

Anxiety 
2.41 0.69 1.00 4.40 

Task Value 3.40 0.54 1.40 5.00 

Self-
Efficacy 

2.38 0.46 1.29 4.28 

 

Table 3. Topic-level descriptive statistics 

 Climate Change Thermoregulation 

 Mean SD Min Max Mean SD Min Max 

Student Perceptions         

Perceived Difficulty 2.82 1.09 1.00 5.00 2.47 1.25 1.00 5.00 
Perceived Familiarity 3.80 0.94 1.00 5.00 2.10 1.15 1.00 5.00 

Student Performance         

Pre-Test 6.32 2.65 2.00 13.00 5.81 2.25 1.00 13.00 

Post-Test 9.28 3.28 2.50 17.00 10.22 4.34 2.00 21.50 

Overview of Results 

We first calculated correlations between science anxiety 

scores and other student measures. Table 4 gives these results 

separately for each scenario and shows that science anxiety is 

significantly correlated with prior knowledge (defined by 

pre-test) for both scenarios. Due to this, as well as the known 

impact of prior knowledge on student regulation and 

motivation (Winne, 2017), we also computed partial 

Spearman correlations that control for prior knowledge. Post-

hoc p-value correction was conducted using the false 

discovery rate method. 

 

Table 4. Spearman correlations with science anxiety 

across both scenarios and partial Spearman correlation 

controlling for pre-test (prior knowledge). 

 Climate Change Thermoregulation 

 Spearman Partial Spearman Partial 

Student Perceptions:     
    Perc. Difficulty -0.088 -0.091 -0.361** -0.332** 

    Perc. Familiarity -0.286** -0.231* -0.09 -0.084 

Student Performance:     
    Pre-Test -0.29**  -0.244*  
    Post-Test -0.378** -0.258* -0.303** -0.23* 

    Learning -0.168 -0.258* -0.2 -0.23* 

Proportion of Time:     
Off-task 0.128  0.066 0.136 0.1 

Searching 0.144  0.155 0.235* 0.191 

Monitoring -0.184 -0.175 -0.207* -0.209* 

Assembling -0.162 -0.032 -0.003 0.013 

Translating  0.141  0.118 0.043 0.099 

Note: Sig. findings in bold, *=p<0.05, **= p<0.01 

 

We note that science anxiety was significantly related to 

the perceptual measures administered in this study, but was 

inconsistent across the scenarios. In the climate change 

scenario, anxiety correlated with lower familiarity, but 

correlated to lower difficulty in the thermoregulation 

scenario. These relationships held even when controlling for 

prior knowledge.  

Although the thermoregulation finding is somewhat 

surprising, it suggests that anxious students felt more 

prepared to complete this (second) scenario. It’s possible 

students’ procedural familiarity with Betty’s Brain 

influenced this perception. More research is required to test 

this hypothesis since procedural familiarity was not 

measured, but objective learning measures are compatible 

with this premise. Despite lower familiarity and lower pre-

test scores in the thermoregulation scenario, the completion 

rate and post-test scores were higher for it than they were for 

the climate change scenario. In the climate change scenario, 

science anxiety was not significantly correlated to any of the 

behaviors labeled with the off-task model or SMART 

categories. However, in the thermoregulation scenario, 

science anxiety was positively correlated with searching 

behaviors and negatively correlated with monitoring 

behaviors. These relationships held when controlling for pre-

test, meaning that the behavior differences are not attributable 

to low prior knowledge and instead warrant further 

investigation.  

Student Motivation 

We also correlated science anxiety to two motivation 

constructs – self-efficacy and task value – repeating our 

method of computing partial Spearman correlations to 

control for prior knowledge. The results indicated that 

students with higher science anxiety show lower self-

efficacy. This finding is in line with similar findings for 

mathematics anxiety (Jameson & Fusco, 2014). We also 
observed that students with higher science anxiety placed a 

lower value on Betty’s Brain tasks in ways that seem to align 

with avoidance strategies and/or reactions to a perceived 

external threat (Eysenck et al., 2007). Taken together, self-

efficacy and task value form part of student motivation, 

implying that students with higher science anxiety are less 

likely to actively engage in science tasks. 

 

Table 5. Spearman correlation between science anxiety 

and measures of self-efficacy and task value 
 Spearman Partial Spearman 

Self-Efficacy -0.525** -0.488** 

Task Value -0.329** -0.296** 

Note. Bold values indicate a significant correlation, * = p < 0.05, ** = p 

< 0.01 

Performance Measures 

To further examine science anxiety’s effect on student 

performance, we again constructed linear mixed-effects 

models for each performance measure (post-test or learning 

gains). Specifically, each model regressed a performance 

measure (Z-scored by topic) onto the students’ science 

anxiety score, with student as an intercept-only random effect 

(which adjusts the model intercept per student) and student’s 

pre-test score as a covariate. Perceived familiarity and off-

task behavior were covariates in these models, but perceived 

difficulty was excluded to avoid suppressor effects. Table 6 

gives standardized coefficients and shows anxiety negatively 

predicted student learning gains even when accounting for 

prior knowledge (via pre-test) and off-task behavior, which 
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may also be influenced by anxiety (Mallow, 2006; Udo et al., 

2004).  

  

Table 6. Std β coef. regressing performance on anxiety 
 Post Test Learning 

Pre-Test .42** .28** 

Science Anxiety -.19** -.22** 

Perceived Familiarity .08 .09 

Off-task Behavior -.14** -.18** 

Note: Sig. findings in bold, *=p<0.05, **=p<0.01 

Student Behavior/Self-regulation 

Finally, we examined the relationship between anxiety and 

the five student behavior variables, namely the proportion of 

time spent off-task and the four SMART categories (Winne, 

2017) found in our data. We again constructed linear mixed-

effects models, with the same approach described above for 

each variable in turn. We included off-task behavior as a 

covariate in models predicting the SMART variables to avoid 

any potential confounds. Table 7 gives the resulting 

standardized beta coefficients. 

Our results indicate that science anxiety influences how 

students use the system, specifically the degree to which they 

choose to engage in searching and monitoring behaviors. 

Searching involves reviewing “gold standard resources,” 

whereas monitoring actions involve the student comparing 

their own work to external standards and making some kind 

of evaluation (e.g., “this is an accurate map of what I just 

read”) (Winne, 2017). 

Our results show that anxious students spend more time 

searching (relying on existing resources) and less time 

monitoring their work by reviewing feedback and/or making 

edits. When combined with performance measure results 

discussed above, these behavioral differences suggest that 

anxious students’ ineffective self-regulation in the learning 

technology may be reducing their opportunities to learn. 

These results suggest that to facilitate online learning, we 

must acknowledge and address students’ individual anxiety 

levels (discussed more below). 

Table 7. Std β coef., regressing behavior on anxiety 

               Dependent Variables 
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Pre-Test -.09 -.09 .00 0.2** .15 

Science Anxiety .09 .19** -.22** -0.02 .01 

Perc. Familiarity .01 .06 -.07 0.01 .00 

Off-task Behavior   .15** -.19** -0.2** .04 

Note: Sig. findings in bold, *=p<0.05, **=p<0.01 

Discussion and Conclusions 

Science anxiety can impede a student who otherwise would 

excel, especially if it interferes with the increased use of 

online learning systems, which expect considerable use of 

SRL strategies.  

Our results indicate that students with high science anxiety 

have low self-efficacy and low perception of task value. 

Notably, they ultimately performed worse while reporting 

lower levels of perceived difficulty, which may be related to 

how they self-assess their own abilities. That is, anxious 

students with low self-efficacy may not be able to adequately 

judge the difficulty of a particular learning context because 

they blame struggles on their own low skills. These effects 

were consistent even when controlling for factors like prior 

knowledge, demonstrating the clear impacts of science 

anxiety on student experiences.  

We have also shown that science anxiety is linked to 

significantly different SRL behaviors, even when controlling 

for prior knowledge. Specifically, anxious students were 

more likely to spend their time searching for knowledge than 

monitoring/evaluating the work they have already completed. 

This finding aligns with work showing that anxious students 

avoid ego-threatening activities (Middleton & Midgley, 

1997) and demonstrates an important mechanism underlying 

anxiety’s to less learning. That is, if anxious students monitor 

their work less often, they are skipping important 

opportunities to reflect on feedback – a known precursor to 

learning (Pekrun et al., 2002) – and thus (unknowingly) 

limiting their learning experiences.  

One key application of this work is the development of 

scaffolding for high-anxiety students. We have shown that 

anxious students are less likely to monitor their work. By 

analyzing student actions in real-time, we can follow their 

progress and provide additional guidance for high anxiety 

students. For example, we could have the mentor agent direct 

the student to a different task or evaluate their progress.  

However, we should be mindful that students with high 

anxiety may be sacrificing their self-regulated learning 

techniques (i.e., monitoring) in order to better self-regulate 

their anxiety. That is, if monitoring behaviors invoke anxiety 

by forcing students to compare their performance to 

standards (potentially coming up lacking), encouraging such 

tasks directly may not be appropriate. Alternate approaches 

such as a human-the-loop design (i.e., the teacher) should 

instead be considered. On the other hand, if the primary 

connection between anxiety and lower educational 

performance is the avoidance of monitoring behaviors (as our 

results may suggest), nudges by the system or scaffolding 

students to participate in monitoring behaviors may help 

mitigate this problem. 

Limitations and Future Work 

Throughout this work we have relied on self-report 

measures, which in turn relies on students being cognizant of 

their own thinking and responding honestly. However, due to 

the highly internal nature of some of the constructs being 

measured, self-report presents the best viable option. To 

mitigate potential confounds, we leveraged a previously 

validated anxiety scale with reported high internal validity 

(Johnston-Wilder et al., 2014). One issue with our approach 

was that many of the self-reports happened only once during 

the study, either at the beginning or end. Future work should 

collect multiple reports throughout the learning session and 

perhaps also find ways to automatically detect some of the 
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constructs and behaviors measured here, such as self-

efficacy, task value, and perceived difficulty.  

This work did not consider other factors (e.g., gender or 

general anxiety level) that may influence science anxiety. 

Future work should explore how such factors effect the 

interaction between anxiety and SRL.  

In this work, we have used log file data to conduct a 

microanalysis of the operations part of the COPES model 

(Winne & Hadwin, 1998), categorizing the SRL behaviors 

using the subsequent SMART model (Winne, 2011). Future 

work should also consider broadening this approach to better 

represent the other COPES model elements, such as 

conditions and products. This more in-depth analysis will 

provide an even more detailed understanding of self-

regulated learning within learning technologies and thus 

provide even greater potential to support students.  

Concluding Remarks 

This paper investigates the relationship anxiety has to the 

SRL strategies that students use in computer-based learning. 

Our analyses, focusing specifically on science anxiety, 

indeed showed that anxiety was related (if modestly) to 

students’ SRL strategies, even after controlling for prior 

knowledge. These findings contribute to scientific 

understanding of anxiety in learning with technology and will 

inform practical implementations of efforts to reduce science 
anxiety. Reducing science anxiety is critical because of the 

adverse effects associated with it. Thus, we envision this 

paper ultimately contributing to better science learning and 

more positive perceptions of science. 
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